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The Friedel artificially inserted resonance �FAIR� magnetic state is extended from the one-channel to the
multichannel Friedel-Anderson problem in this paper. The magnetic pseudoground state of the multichannel
Friedel-Anderson problem is constructed from a product of one-channel magnetic states of each individual
channel. A Hamiltonian that is rotationally invariant in both spin space and real space, which was developed by
Dworin, Narath, and Parmenter, is used in the calculation. The magnetic ground-state energy is obtained
through optimization of the conduction-band basis and Slater-state coefficients. The FAIR solution yields a
considerably lower energy than the mean-field solution and requires a much larger Coulomb energy to form a
magnetic moment.
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I. INTRODUCTION

Since the 1930s, a series of experimental results have
shown that localized magnetic moments are widespread in
iron-group impurities dissolved in nonmagnetic metals.1

These observations lead to discussions of the interaction be-
tween the spins of a localized impurity and the conduction
electrons.

To explain the physics of these magnetic impurities
Friedel2 extended the model for a d resonance in an �s , p�
host by introducing a Coulomb repulsion between different d
electrons on the impurity. Anderson3 simplified the magnetic
impurity problem by removing the orbital degeneracy of the
d electrons. This is now called the one-channel Friedel-
Anderson �FA� impurity problem while the inclusion of n
orbits is denoted as the n-channel impurity problem. In the
one-channel FA model the orbital degeneracy is ignored, and
only the spin degeneracy of the d impurity is examined.
When both the d states are occupied, the two d electrons with
opposite spin repel each other due to the Coulomb potential
energy U. Thus if the unperturbed energy of one d electron
lies below the Fermi level at energy Ed�Ed�0�, then the
energy of the other d electron with opposite spin is Ed+U,
which is above the Fermi energy for U� �Ed�. Further, the
electrons can hop between the s- and d-electron states via the
hopping matrix element Vsd. The combination of Coulomb
repulsion and s-d hybridization gives the FA impurity its
interesting physical properties. Both Friedel and Anderson
did a self-consistent mean-field calculation to determine
whether a localized moment exists as a function of the values
of U and Ed.

Kondo4 calculated the scattering probability for the con-
duction electrons due to the s-d exchange interaction in the
second order Born approximation. It was shown that the
scattering of the conduction electrons by the magnetic impu-
rity yields a divergent contribution to the resistance in per-
turbation theory. This gives a singular term involving a
−log T dependence for the resistance on temperature T,
which increases the resistance at low temperature. Combined
with the lattice resistivity, a minimum in the resistance ver-
sus temperature curve is observed.

During the last 40 years the properties of the FA impurity
have been very intensively studied. However, the over-
whelming number of investigations focused on the singlet or
Kondo state and its properties below the Kondo temperature.
However, in addition a number of sophisticated methods
have been developed to calculate the magnetic moment of
the impurity. One of these methods is the spin-density-
functional theory �SDFT�. SDFT calculates the conduction
band structure from the first principles, but, like the majority
of these methods, the local magnetic moment is still calcu-
lated in mean-field theory �MFT�.

It is well known that the ground state of the FA impurity
problem is a singlet Kondo state which shows no magnetic
moment. In many cases the Kondo temperature TK is very
low, in the range of liquid-helium temperature. In this case
the impurity is in the magnetic state at relatively low tem-
perature. When the temperature is several times the Kondo
temperature one is sufficiently above TK to destroy the
Kondo ground state. On the other hand, one may expect that
the properties of the magnetic state are not yet influenced by
the thermal excitations due to the finite temperature. There-
fore a number of theoretical investigations treat the magnetic
state at zero temperature as a magnetic ground state. This
approach is probably justified but it leaves the work always
vulnerable to the criticism that there is no magnetic moment
at zero temperature.

A new numerical method, the Friedel artificially inserted
resonance �FAIR� method5–9 was introduced recently by one
of the authors to investigate the Friedel-Anderson and Kondo
impurity problems. In the FAIR theory the magnetic state is
a building block of the singlet Kondo state. Instead of de-
stroying the singlet state with a magnetic field or raising the
temperature above the Kondo temperature in this paper we
restrict the solution of the multichannel Friedel-Anderson
impurity problem to the magnetic state. We denote this state
as the magnetic pseudoground state. One possible interpreta-
tion of the pseudoground state is the following: One calcu-
lates the ground state in sufficiently large magnetic fields so
that the singlet state is destroyed and then extrapolates this
state back to zero magnetic field. There is an ambiguity only
in the vicinity of the characteristic value of U for the forma-
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tion of a magnetic moment, as we explain in the discussion
section below.

In this paper the orbital degeneracy of the d impurity is
considered in the Friedel-Anderson problem. The different d
orbits are coupled with those components of the conduction
band that have the same angular symmetry. So the s-d hop-
ping occurs only within the individual channels while the
Coulomb coupling occurs between all d orbits. The multi-
channel FA impurity requires a Hamiltonian that satisfies ro-
tational invariance in both spin and real space. Such a Hamil-
tonian has been developed by Dworin and Narath10 and
independently by Parmenter11 �and is denoted as the Dworin-
Narath-Parmenter �DNP� Hamiltonian�. The unperturbed
d-energy-level structure can be constructed based on the
DNP Hamiltonian. In Sec. II we discuss the available states
in the two-channel problem. In Sec. III the local magnetic
moment is calculated from mean field theory for two, three,
four, and five channels. In Sec. IV, the FAIR method is ex-
tended to the three-channel Friedel-Anderson problem. A
FAIR magnetic multichannel ansatz is constructed from the
product of the FAIR magnetic solutions of each individual
channel. Then the FAIR ground state and magnetic moment
are derived by minimizing the ground-state energy. In Sec. V
the physical meaning of the results is discussed. Sec. VI is
the conclusion.

II. MULTICHANNEL IMPURITY PROBLEM

Friedel and Anderson considered a d impurity dissolved
in an s-band host. When the orbital degeneracy of the d
impurity is ignored, the tenfold degeneracy of a real d impu-
rity is simplified to a twofold degeneracy for electron spin up
and spin down. The Coulomb repulsion energy U is intro-
duced when both the spin-up and spin-down d states are
occupied. The one-channel Friedel-Anderson Hamiltonian
HFA is expressed as follows:

HFA = �
�
��

�=0

N−1

��c��
† c�� + Edd�

†d�

+ �
�=0

N−1

Vsd����d�
†c�� + c��

† d��� + Ud↑
†d↑d↓

†d↓, �1�

where N Wilson states are used in the Hamiltonian to express
the conduction band. � represents the spin direction, c��

† and
d�

† are the creation operators of the Wilson s electrons and
the d-impurity electrons, �� and Ed are the energies of the c��

†

and d�
† states, Vsd��� is the hopping matrix element between

c��
† and the d�

† impurity, and U is the Coulomb energy be-
tween two d-impurity electrons with opposite spins. The de-
tails of how to construct the Wilson states can be found in
Ref. 12.

The one-channel model did not include the orbital degen-
eracy �l� of the d impurity. When l�0, there are �2l+1�
degenerate spatial orbits and 2�2l+1� degenerate d-impurity
states after including the spin effect, which creates �2l+1�
channels to couple with the s-band electrons. Both the Cou-
lomb repulsion potential and the exchange energy should be
included when considering the interaction among d-impurity

electrons. As Anderson suggested, a Hamiltonian can be
written as follows:

H = �
m,�

Hm,� + Hc,

Hm,� = �
�=0

N−1

��c��
m†c��

m + Ed
mn�

m + �
�=0

N−1

Vsd
m ����d�

m†c��
m + c��

m†d�
m� ,

Hc =
1

2
U �

m,m�,�

n�
mn−�

m� +
1

2
�U − Uex� �

m,m�,�

�1 − �m,m��n�
mn�

m�,

�2�

where n�
m=d�

m†d�
m; Hm,� is the kinetic energy term in channel

m and spin �; and Hc represents the potential energy term.

Un�
mn−�

m� represents the Coulomb interaction between two
opposite-spin d electrons from any two channels. When two
d electrons have the same spin, an extra exchange energy
−Uex is included. According to the Pauli exclusion principle,
two d electrons cannot have the same orbital quantum num-
ber and spin quantum number simultaneously. If the two d
electrons have the same quantum numbers, m=m� and �

=��, we will have �m,m�=1 and �1−�m,m��n�
mn�

m�=0, and the
contribution to Hamiltonian will be zero.

Caroli et al.13 and also Lucas and Mattis14 pointed out
independently that the above Hamiltonian potential, Hc in
Eq. �2�, is not rotationally invariant in spin space. Later
Dworin and Narath10 and independently Parmenter11 pointed
out that the Hamiltonian suggested by Caroli et al. is not
rotationally invariant in real space. Instead they suggested
the following Hamiltonian, which is simultaneously rotation-
ally invariant in both spin and real space:

Hc =
1

2
U �

m,m�,�

n�
mn−�

m� +
1

2
�U − Uex� �

m,m�,�

�1 − �m,m��n�
mn�

m�

−
1

2
Uex �

m,m�,�

�1 − �m,m��d�
m†d−�

m d−�
m�†d�

m�

+
1

2
Uex�

m,�
n�

mn−�
m . �3�

This DNP Hamiltonian commutes with the total spin angular
momentum operator and total orbital angular momentum op-
erator. Therefore, it is rotationally invariant in both real and
spin space. We start our analysis of the DNP Hamiltonian by
considering the possible states and energies of the d electrons
in the absence of interaction with the s electrons.

In the nondegenerate d-impurity problem, there are only
two d states, spin up and spin down. If only one d state is
occupied, the state energy is Ed, where Ed�0. If both the
spin-up and spin-down d states are occupied simultaneously,
a Coulomb energy U is introduced by the two antiparallel
spins and the total energy is 2Ed+U, which is analogous to
the second d-electron state having an effective energy Ed
+U�0. For convenience of calculation, the Fermi energy is
placed right in the middle of the two d-electron energies,
which makes the energy of the two electrons symmetric
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around the Fermi energy, and the sum of the energies of the
two d electrons is zero. Therefore, we have the relation
2Ed+U=0 and Ed=−U /2.

In the multichannel case, the problem becomes more
complicated because of the exchange energy Uex. Let us con-
sider as an example the two-channel problem, where we
name the two channels channel x and channel y. There are
totally four d states after including spin up and spin down.
The possible multielectron states are listed in Table I and
explained below.

Without losing generality, we can assume that the first
electron is located in the channel x spin-up state �↑x�, which
has energy Ed. The second electron has three options, �a�
channel y spin up �↑y�, �b� channel y spin down �↓y�, and �c�
channel x spin down �↓x�. For case �a�, �↑x↑y� are occupied,
and the total energy is 2Ed+U−Uex, which means the effec-
tive energy of the second electron is Ed+U−Uex. For case
�b�, �↑x↓y� are occupied, the total energy is 2Ed+U, and the
effective energy of the second electron is Ed+U. For case
�c�, �↑x↓x� are occupied, the total energy is 2Ed+U+Uex, and
the effective energy of the second electron is Ed+U+Uex.
From the above discussion, one can see that the energy of
case �a� �↑x↑y� is lower than that of the other two cases and
the combination in case �a� is most energetically favorable.
When a third electron is introduced based on the two-
electron occupation in case �a�, the state composition looks
like �↑x↓x↑y�, and the total energy is 3Ed+3U, which implies
the third electron has the effective energy Ed+2U+Uex. All
states with three d electrons have the same energy. It will be
a full shell d state when a fourth electron is added. The state
is then �↑x↓x↑y↓y�, the total energy is 4Ed+6U, and the fourth
electron has energy Ed+3U. The number of electrons that are
below the Fermi energy can be manipulated by changing the
relation between Ed, U, and Uex.

Figure 1 shows the effective energy of the four d electrons
in the two-channel Friedel-Anderson problem. When the re-
lation 2Ed+U−Uex=0 is satisfied, the Fermi energy lies cen-

tered between the first and the second d electrons, and there
is only one d electron below the Fermi level. If 2Ed+3U
=0 is satisfied, the Fermi energy is centered between the
second and third d electrons, and there are two d electrons
below the Fermi level. If 2Ed+5U+Uex=0 is satisfied, three
d electrons are below the Fermi energy.

For simplicity we have discussed the two-channel prob-
lem as an example in this section. The energy level scheme
for a larger number of channels follows the same principles
but is slightly more complicated.

III. MAGNETIC MOMENT IN MEAN-FIELD THEORY

Because the Coulomb and exchange interaction terms in
the DNP Hamiltonian are not single-body operators, an exact
solution cannot be obtained analytically. The mean field
method is one of the simplest approaches to many-body
theory problems, and it can provide us with a number of
meaningful results. In the DNP Hamiltonian, the Hm,� term is
a single-body Hamiltonian, which can be written directly as
a Hamiltonian matrix. The Hc term is a two-body problem,
which cannot be simply expressed as a Hamiltonian matrix.
By assuming that the state occupation has a small variation
around the expectation value, the two-body problem can be
transformed into a one-body problem by the following sub-
stitutions:

n�
mn��

m� = n�
m	n��

m�
 + 	n�
m
n��

m� − 	n�
m
	n��

m�
 ,

d�
m†d−�

m d−�
m�†d�

m� = d�
m†d−�

m 	d−�
m�†d�

m�
 + 	d�
m†d−�

m 
d−�
m�†d�

m�

− 	d�
m†d−�

m 
	d−�
m�†d�

m�
 , �4�

where n�
m=d�

m†d�
m, and 	n�

m
 is the expectation value of the d
occupation for channel m and spin �. As Eq. �4� shows, one
obtains a spin-flip term in the mean-field Hamiltonian. This
term is a consequence of the rotational invariance of the
original DNP Hamiltonian.

After substituting these expressions into the DNP Hamil-
tonian the mean-field Hamiltonian becomes

H = �
m,�

Hm,�� −
1

2
U �

m,m�,�

	n�
m
	n−�

m�
 −
1

2
�U − Uex� �

m,m�,�

m�m�

	n�
m


�	n�
m�
 −

1

2
Uex�

m,�
	n�

m
	n�
m
 +

1

2
Uex �

m,�

m�m�

	dm,�
† dm,−�


�	dm�,−�
† dm�,�
 , �5�

Hm,�� = �
�=0

N−1

��c�,�
m† c�,�

m + �
�=0

N−1

Vsd
m ����d�

m†c�,�
m + c�,�

m† d�
m�

+ �Ed
m + U�

m�

	n−�
m�
 + �U − Uex� �

m��m

	n�
m�


+ Uex	n−�
m 
�n�

m − Uex
 �
m��m

	d�
m�†d−�

m�
�d−�
m†d�

m. �6�

TABLE I. States and energies for different numbers of d elec-
trons on the two-channel impurity.

No. of d electrons State composition 	E Total energy

First ↑x Ed Ed

Second �a� ↑x↑y Ed+U−Uex 2Ed+U−Uex

Second �b� ↑x↓y Ed+U 2Ed+U

Second �c� ↑x↓x Ed+U+Uex 2Ed+U+Uex

Third ↑x↓x↑y Ed+2U+Uex 3Ed+3U

Fourth ↑x↓x↑y↓y Ed+3U 4Ed+6U

E +U-U
d ex

E +2U+U

d ex

E
d

exd

E +3U
dd

1 d below E

2 d’s below E

F

3 d’s below E
F

F

FIG. 1. Manipulation of the number of occupied d states by
changing the location of the Fermi level.
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All the terms in H except for Hm,�� are numbers instead of
variables. The last term in Hm,�� generates spin flips. There is
no transition matrix element between different channels. We
define

	Ed,�
m 
 = Ed

m + U�
m�

	n−�
m�
 + �U − Uex� �

m��m

	n�
m�
 + Uex	n−�

m 
 ,

Vdd
m = − Uex
 �

m��m

	d�
m�†d−�

m�
� . �7�

Because of the spin-flip transition process between Hm,↑�
and Hm,↓� , they are coupled together and can be expressed by
a �2N+2�� �2N+2� Hamiltonian matrix for each channel as
follows:

c0↑
† �0 0 0 0 Vsd�0� 0

cN−1↑
† 0 �N−1 0 0 Vsd�N−1� 0

c0↓
† 0 0 �0 0 0 Vsd�0�

cN−1↓
† 0 0 0 �N−1 0 Vsd�N−1�

d↑
† Vsd�0� Vsd�N−1� 0 0 �Ed↑� Vdd

d↓
† 0 0 Vsd�0� Vsd�N−1� Vdd �Ed↓�

c0↑ cN−1↑ c0↓ cN−1↓ d↑ d↓

The ground state of each channel can be simply obtained
from separate matrix diagonalization. The eigenstates are
mixtures of spin-up and spin-down states


i
† = �

j=0

N−1

�cj↑
† Aj,i + cj↓

† Aj+N,i� + d↑
†A2N,i + d↓

†A2N+1,i. �8�

Therefore the expectation value 	d↑
m†d↓

m
 is not zero.
If the s-electron band is half filled, where N /2 electrons

have spin up and N /2 electrons have spin down for each
channel, then the ground state for each channel �ground listed
below is constructed from those N eigenstates 
i that have
the lowest eigenenergies

�ground = �
i=0

N−1


i
†�0,

where �0 is the vacuum state.
The expectation values can be calculated in the ground

state as

	n↑
 = 	�ground�d↑
†d↑��ground
 =��

i=0

N−1


i�d↑
†d↑��

i=0

N−1


i�
= �

i=0

N−1

�A2N,i�2, �9�

	d↑
†d↓
 = 	�ground�d↑

†d↓��ground
 = �
i=0

N−1

A2N,iA2N+1,i = 	d↓
†d↑
 .

�10�

We can give an initial value to each expectation value and
substitute these initial values into the Hamiltonian matrix.
After diagonalizing the Hamiltonian matrix, the new expec-
tation values can be calculated. The ground state can be ap-
proached by repeating this procedure until these expectation
values reach self-consistency. Then the electron occupation
and magnetic moment can also be calculated.

Figure 2 shows the magnetic moment transition curve
when there is only one d state below the Fermi energy for the
two-, three-, four- and five-channel problems with �Vsd

0 �2
=0.1 and Uex=0.1. Because there is only one d-impurity
electron below the Fermi energy, the magnetic moment ap-
proaches 
B when the Coulomb potential U is larger than the

FIG. 2. Calculation of the magnetic moment in mean-field
theory for a multichannel Friedel-Anderson impurity as a function
of the Coulomb energy U. One d electron lies below the Fermi
level. The number of channels �2,3,4,5� is labeled beside each
curve.
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characteristic value. In Fig. 2 one clear moment transition
can be observed. The Friedel-Anderson impurity which has
more channels has a larger characteristic Coulomb potential
U.

IV. MAGNETIC MOMENT IN THE FAIR SOLUTION OF
THE MULTICHANNEL IMPURITY PROBLEM

Now the FAIR method is applied to solve the DNP Hamil-
tonian. The FAIR method uses a series of discrete Wilson-
band states15 to represent a continuous conduction electron
band, where the large number of states in a macroscopic
metal, such as N=1023, is reduced to a small number, such as
N=40. A FAIR state, which is constructed from s-band Wil-
son states, hybridizes with the d electron to approach the
ground state. After optimization of the FAIR state by rotation
in the Hilbert space an impressively good result for the
ground-state energy is obtained. For details see Refs. 5–7.

The one-channel FAIR magnetic solution for half filling
of the s band is composed of four Slater states

�MS = �Aa0↑
† b0↓

† + Ba0↑
† d↓

† + Cd↑
†b0↓

† + Dd↑
†d↓

†��
i=1

n−1

ai↑
† �

i=1

n−1

bi↓
† �0,

�11�

where a0↑
† and b0↓

† are the FAIR states for the spin-up and
spin-down bases, and n=N /2. Both the FAIR states can be
constructed from linear combinations of the Wilson
conduction-band states.

a0↑
† = �

�=0

N−1

��
0c�↑

† ,

b0↓
† = �

�=0

N−1

��
0c�↓

† . �12�

The details of the construction of the FAIR states and the
calculation of coefficients ��

0 and ��
0 have been shown in

Refs. 6 and 12. �a0↑
† ,a1↑

† ,a2↑
† , . . . ,aN−1↑

† � and
�b0↓

† ,b1↓
† ,b2↓

† , . . . ,bN−1↓
† � are both orthogonal bases, and the

ai↑
† and bi↓

† states can be uniquely determined by the FAIR
states a0↑

† and b0↓
† .

Using the basis �a0↑
m† ,a1↑

m† ,a2↑
m† , . . . ,aN−1↑

m† � and
�b0↓

m† ,b1↓
m† ,b2↓

m† , . . . ,bN−1↓
m† � the multichannel Friedel-Anderson

DNP Hamiltonian can be written as follows:

H = �
m

�Hm↑� + Hm↓� � + Hc,

Hm↑� = �
i=0

N−1

Eam�i�ai↑
m†ai↑

m + �
i=1

N−1

Vfr
am�i��a0↑

m†ai↑
m + ai↑

m†a0↑
m �

+ Edd↑
†d↑ + �

i=0

N−1

Vsd
am�i��d↑

†ai↑
m + ai↑

m†d↑
m� ,

Hm↓� = �
i=0

N−1

Ebm�i�bi↓
m†bi↓

m + �
i=1

N−1

Vfr
bm�i��b0↓

m†bi↓
m + bi↓

m†b0↓
m �

+ Edd↓
†d↓ + �

i=0

N−1

Vsd
bm�i��d↓

†ai↓
m + ai↓

m†d↓
m� ,

Hc =
1

2
U �

m,m�,�

n�
mn−�

m� +
1

2
�U − Uex� �

m,m�,�

m�m�

n�
mn�

m�

−
1

2
Uex �

m,m�

m�m�

d�
m†d−�

m d−�
m�†d�

m� +
1

2
Uex�

m,�
n�

mn−�
m ,

�13�

where m represents the channel index. Here

Eam�i� = �
�

��
mi����

mi,

Vsd
am�i� = �

�

Vsd�����
mi,

Vfr
am�i� = �

�

��
miVsd�����

m0 �14�

and corresponding expressions for the b basis.
Because there is no transition process among the different

channels in the DNP Hamiltonian, all the channels are inde-
pendent. The multichannel magnetic FAIR state �MS

M is the
product of one-channel FAIR magnetic solutions for each
individual channel.

�MS
M = �

m

�Aa0↑
m†b0↓

m† + Ba0↑
m†d↓

m† + Cd↑
m†b0↓

m†

+ Dd↑
m†d↓

m†��
i=1

n−1

ai↑
m†�

i=1

n−1

bi↓
m†�0. �15�

There are 42+2=18 Slater states in a two-channel FAIR
magnetic state, 43+24=88 Slater states in a three-channel
FAIR magnetic state. The 2 and 24 additional states are due
to spin-flip processes. Take the three-channel FAIR magnetic
state case as an example. Similar to the procedure in the
one-channel Friedel-Anderson problem, the FAIR states a0

m†

and b0
m†, and the 88 coefficients can be obtained by minimiz-

ing the ground-state energy. The 88 coefficients are opti-
mized under the normalization constrain condition,
	�MS

M ��MS
M 
=1

Egs =
	�MS

M �H��MS
M 


	�MS
M ��MS

M 

. �16�

The quasivacuum energy Equasi is defined as the ground-
state energy when there is no interaction between the
s-conduction electrons and d-impurity electrons. We define
E00=Egs−Equasi to remove the dependence of the ground-
state energy on the construction of the conduction band. In
Fig. 3 the numerical results for E00 are plotted as a function
of the Coulomb repulsion U for the three-channel Friedel-
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Anderson problem with three d electrons below the Fermi
energy. The s-d interaction is fixed as �Vsd�2=0.1, the ex-
change energy among d-impurity electrons is chosen as Uex
=0.1, and the Coulomb repulsion U varies from 0 to 6. The
third d electron has the energy Ed+2U−2Uex, and the fourth
d electron has energy Ed+3U+Uex. The Fermi energy is cen-
tered between the third and the fourth d electron so that the
sum of the energies of these two electrons is zero, �2Ed
+5U−Uex=0�, which implies that the d-state energy Ed
= �Uex−5U� /2. Figure 3 shows that the ground-state energy
of the FAIR magnetic state is lower than that of the mean-
field approach in this three-channel Friedel-Anderson prob-
lem, which means the FAIR magnetic state is closer to the
ground state than is the mean-field-theory state.

In Fig. 4 the magnetic moments obtained from the FAIR
magnetic and the mean-field approach are plotted as a func-
tion of the Coulomb repulsion U for the three-channel
Friedel-Anderson problem. The cases of one d, two d, and

three d electrons below the Fermi energy are compared in
this graph. To obtain the different d occupations one has to
fulfill conditions similar to those for the two-channel case, as
discussed below Table I. For the three-channel case the cor-
responding conditions for one, two, and three occupied d
states are: �1� 2Ed+U−Uex=0, �2� 2Ed+3U−3Uex=0, and
�3� 2Ed+5U−Uex=0. The meaning of the various symbols in
the graph is explained in the figure caption. Both the mean-
field approach and the FAIR magnetic approach show similar
phenomenon: the magnetic moment does not show up until
the Coulomb repulsion U is larger than a characteristic value.
Most of the FAIR calculations show some hysteresis near the
characteristic value of U. This causes the discontinuities
shown in Fig. 4 for one and two d electrons below the Fermi
energy. The filled symbols correspond to the states with the
lowest energies. When the Coulomb repulsion U is large, the
spin-up and spin-down subbands are fully split, and the mag-
netic moment value in units of 
B approaches the number of
d-impurity electrons below the Fermi energy.

However, one can observe that the FAIR magnetic solu-
tion has a much larger transition Coulomb repulsion than in
the mean-field approach. For example, when the Fermi en-
ergy lies centered between the first d electron and the second
d electron, the mean-field solution develops a magnetic mo-
ment when U�1.0, while the FAIR magnetic solution does
not show a magnetic moment until a considerably larger
Coulomb repulsion U=3.0, which is three times larger than
the characteristic value predicted by the mean-field method.
In the Friedel-Anderson problem, the d impurities prefer to
keep the symmetry between spin up and spin down until the
symmetry is broken by the increasing Coulomb repulsion U.
The FAIR solution has much more flexibility in approaching
the ground state than the mean-field method, therefore the
symmetry can survive for a longer time than the mean-field
approach. The more d electrons there are below the Fermi
energy, the easier it is to observe a magnetic moment. When
there are three d electrons below the Fermi energy, the char-
acteristic Coulomb potential is only U=0.3, which is much
smaller than for the case of one d electron below the Fermi
level.

V. DISCUSSION

The ground state for the FA-impurity problem is the sin-
glet state, which is nonmagnetic. Only if one destroys the
singlet state, either by raising the temperature above the
Kondo temperature or by applying a magnetic field larger
than kBTK /
B, does the magnetic moment become visible. In
the parameter range of large U�U��=��Vsd�2gF� �gF
=density of states in the s subband at the Fermi level� the
Kondo energy is very small. In this region the singlet state is
built from a well-defined magnetic moment. This was dem-
onstrated by Krishna-murthy, Wilkins, and Wilson.16 Refer-
ence 16 showed that the renormalization-group flow diagram
passes close to the �unstable� fixed point for a local moment.
In this range of U the FAIR singlet ground state is essentially
built from the magnetic pseudoground state and its spin-
reversed sibling. Since the Kondo temperature is low the
same moment is observed above TK.

FIG. 3. �Color online� Ground-state energy comparison between
the FAIR magnetic state and the mean-field approach in the three-
channel Friedel-Anderson problem with three d electrons below the
Fermi level.

FIG. 4. �Color online� Magnetic moments as a function of the
Coulomb energy U for the three-channel Friedel-Anderson impu-
rity. The open symbols represent the results of the mean-field ap-
proximation and the filled symbols are calculated with the FAIR
magnetic state. The three different sets of data are for different
positions of the Fermi level. The number of d levels below the
Fermi level is one for circles, two for up triangles, and three for
down triangles.
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With decreasing value of U the magnetic moment de-
creases and the Kondo temperature increases. In the range of
U where the moment of the magnetic pseudoground state
disappears the Kondo temperature has a maximum. Here the
concept of a rigid magnetic moment breaks down. This
means that the value of 
 shows an increasing variance de-
pending on the external parameters such as temperature and
magnetic field and on the internal structure. �At the charac-
teristic value of U the singlet ground state �in the FAIR
theory� is still composed of a magnetic state and its sibling
but they strongly interfere since they are not orthogonal�.
The characteristic value of U indicates the parameter range
where the magnetic moment is no longer well defined and
changes strongly with magnetic field or temperature.

In complete analogy the MFT magnetic ground state is
also a pseudoground state. One can use it to construct a
Kondo state by pairing it with its spin-reversed sibling.17 In
this paper we confirm for the multichannel FA impurity prob-
lem a previous result that we observed for the single-channel
impurity:5 the energy of the magnetic FAIR state is consid-
erably lower than the energy of the corresponding MFT state.
Furthermore in the FAIR calculation the formation of mag-
netic moment requires a much larger Coulomb energy than in
the mean field theory. This means the MFT strongly overes-
timates the tendency for a magnetic moment. The difference
is rather dramatic, up to a factor of 5 in the three-channel
case.

We assume that the reason for this failure of the MFT is
the fact that it generally yields an incorrect resonance width
of the impurity d states. This can be seen with the following
argument for an impurity with nd occupied d states. If an
electron is injected into an empty d state then all the occu-
pied d states are coupled by the Coulomb interaction and
experience a collective increase in energy. Every d electron
can perform a transition into its conduction subband with the
same angular wave function. This yields �nd+1� decay chan-
nels for the excited multi-d-electron state. In MFT only the
injected d electron can decay because MFT freezes all the
other d electrons in their mean-field expectation values.
Therefore in MFT one obtains a decay rate and resonance
width which are much too small. Actually the resonance
width in MFT is the same as for a Friedel d resonance: �
=��Vsd�2gF=� / �2�d�, where �d is the lifetime of the electron
in the d state, 1 /�d= �2� /���Vsd�2gF. This broadening of the d
resonances has been known for several decades in the singlet
state of the one-channel impurity.18,19 However, the conclu-
sion that this reduces the formation of a magnetic moment
has been only made recently.5,20

It should be emphasized that the majority of numerical
procedures for the calculation of an impurity magnetic mo-

ment use some kind of MFT in the last step. One example is
spin-density-functional theory. Therefore one would expect
that it strongly overestimates the formation of a magnetic
moment. Even more important is the fact that the MFT
misses the dynamic broadening of the density of states and
yields d-resonance widths that are much too small.

VI. CONCLUSION

In this paper we extend the FAIR method from a one-
channel FA-impurity to a three-channel impurity. The orbital
degeneracy of the d impurity is included in the s-d interac-
tion. The DNP Hamiltonian is applied in the calculation to
satisfy rotational invariance in both spin and real spaces. The
magnetic moment of the impurity is calculated in MFT and
in the magnetic FAIR state. Like the case of a one-channel
impurity, the energy of the FAIR state lies considerably be-
low the MFT energy. Both approaches yield a characteristic
Coulomb energy U that must be interpreted carefully. The
first important result is that the MFT strongly overestimates
the tendency to form a magnetic moment.

The FAIR magnetic state is constructed as a product of
the FAIR magnetic states of each individual channel. The
FAIR magnetic state of each channel m can be expressed as
a compact form in a rotated Hilbert space �a0↑

m† ,ai↑
m†� and

�b0↓
m† ,bi↓

m†�. The whole basis can uniquely be determined by
the FAIR states a0↑

m† and b0↓
m†. The ground-state energy can be

calculated through the optimization of the FAIR state com-
position of each channel and the coefficients of all the Slater
states. The energy of the FAIR magnetic method clearly
shows a lower value than that of the mean-field approach.
The magnetic moment obtained by the FAIR magnetic
method approaches the same value as the mean-field solu-
tion, however with a much larger characteristic Coulomb re-
pulsion U. The FAIR magnetic state shows much more flex-
ibility in keeping the impurity symmetry as the Coulomb
repulsion increases.

A further analysis for the FAIR solution is planned. A
rotationally invariant singlet state, which is a better approxi-
mation of the real ground state, can be constructed from the
FAIR magnetic state. We are analyzing the singlet state to-
gether with the magnetic state for the two-channel problem
and will present our results separately. These calculations are
only an initial step to approach a realistic FA impurity. An-
other interesting challenge is to add a spin-orbit interaction.
However, fortunately the spin-orbit interaction is strongly
suppressed in a cubic lattice. This FAIR method can also be
applied to the multichannel Kondo problem, which can con-
tribute to understanding the formation condition of the
Kondo resonance in the multichannel Kondo problem.
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